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Abstract

Objects are entities we act upon, where the functionality
of an object is determined by how we interact with it. In this
work we propose a Dual Attention Network model which rea-
sons about human-object interactions. The dual-attentional
framework weights the important features for objects and
actions respectively. As a result, the recognition of objects
and actions mutually benefit each other. The proposed model
shows competitive classification performance on the human-
object interaction dataset Something-Something. Besides,
it can perform weak spatiotemporal localization and affor-
dance segmentation, despite being trained only with video-
level labels. The model not only finds when an action is
happening and which object is being manipulated, but also
identifies which part of the object is being interacted with.

1. Introduction
Affordance, introduced by James Gibson [9], refers to

the properties of an object, often its shape and material, that
dictate how the object should be manipulated or interacted
with. The possible set of actions that an object can afford is
constrained. For instance, we can drink from a plastic bottle,
pour water into it, squeeze it, or spin it, but we cannot tear it
easily into two pieces (see Figure 1). Similarly, for a given
action, the possible objects which it can apply to are also
limited. For example, we can fold a paper but not a bottle.

A handful of works have exploited object information for
the recognition of Human-Object Interactions (HOIs) and
more general action recognition [3, 10, 31, 19, 44]. However,
understanding HOIs goes beyond the perception of objects
and actions: it involves reasoning about the relationships
between how the action is portrayed and the consequence on
the object (i.e., whether the shape or location of the object is
changed by the action upon it). Most of the previous works
pre-define human-object or action-object pairs for HOI [3,
10, 31]. The classification is done by either a graphical
model [12], a classifier based on the appearance features [10],
∗The work was done when Tete Xiao was an intern at IBM Research,
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Figure 1: Object and action co-dependence. The action
tearing something into two pieces can be performed on a
piece of paper but not a bottle. Given the object bottle, we
can pour water into it or spin it, but cannot fold it or tear it.

or a graph parsing model [31]. A potential issue with the
previous approaches is that the complexity of an HOI model
grows quickly as the number of objects and actions increase.
The reasoning capability of these approaches is also limited
due to the action-object pairs being preset for modeling. In
addition, full annotations including action labels and object
bounding-boxes are often required by these approaches for
the effective modeling of HOIs.

Here we propose a Dual Attention Network model that
leverages object priors as the guidance to where actions are
likely to be performed in a video stream and vice versa. The
focus of attention is represented by a heatmap indicating
the likelihood of where an action is taking place or where
an object is being manipulated in each frame. These atten-
tion maps can enhance video representation and improve
both action and object recognition, yielding very competi-
tive performance on Something-something [11] dataset. We
show that the attention maps are intuitive and interpretable,
enabling better video understanding and model diagnosis.
Such attention maps also facilitate weakly-supervised spa-
tiotemporal localization of objects and actions.

1.1. Related work

Action recognition. Deep convolutional neural net-
works have been used with success for action recognition
[23, 38, 45, 13, 16]. For instance, we can exploit the suc-
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Figure 2: Framework overview. Our approach exploits the role of human action and object in human-object interactions via
the dual attention module. The Dual Attention Network first predicts plausible action and object labels independently as the
priors (1st prediction). Then the priors are used to generate attention maps that weight the features of object and action for the
2nd prediction. Action Recog.: action recognition head. Object Recog.: object recognition head.

cess of CNNs for static images and RNNs for temporal
relations by feeding CNN-based features from single frame
into an RNN model [49, 5, 20]. An alternative approach
is to extend 2D CNNs by applying 3D convolutional filters
(C3D) on raw videos to directly capture the spatiotemporal
information [39]. The 3D filters can be “inflated” from 2D
filters (I3D) [2] and can be initialized with an ImageNet [4]
pre-trained model. Recent works involve Non-local Net-
works [43], which uses space-time non-local operations to
capture long-range dependencies; and Temporal Relation
Network [50], which sparsely samples frames from different
time segments and learns their causal relations. In addition
to the end-to-end frameworks on raw video inputs, optical
flow [15] has also proven to be useful [35, 2, 50] when com-
bined with features extracted from raw RGB images.

Human-object interactions and visual affordance.
Several works have exploited human-object interactions and
affordance for action recognition. Gupta et al. [12] integrate
perceptual tasks to exploit the spatial and functional con-
strains for understanding human-object interactions. Kop-
pula et al. [22] frame the problem as a graph, where the
nodes represent objects and sub-activities while the edges
represent the affordance and relations between human ac-
tions and objects. The graph model can be optimized using
structural Support Vector Machine (SVM) [22] or Condi-
tional Random Field (CRF) [24]. Jain et al. [18] merge spa-
tiotemporal graph with an RNN to model different kinds of
spatial-temporal problems such as motion, action prediction
and anticipation. Gkioxari et al. [10] propose InteractNet
to detect 〈 human, verb, object 〉 triplets by exploiting the
appearance features from detected persons. Dutta and Zielin-
ska [7] employ a probabilistic method to predict the next
action in human-object interactions [41]. Fang et al. [8]
propose a model to learn the interactive region and action
label of an object via watching demonstration videos.

Attention models. Attention mechanism has been
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Figure 3: Illustration of the attention module for the kth

frame. It encodes action (object) priors and attends image
regions accordingly, yielding the representation for object
(action) recognition.

adopted for action recognition. Sharma et al. [33] use a
soft attention module to re-weight CNN features spatially.
Ramanathan et al. [32] propose to attend people involved
in specific events for event detection in multi-person videos.
Song et al. [36] exploit skeleton data for attention module to
extract more discriminative features in human-centered ac-
tions. Du et al. [6] propose to incorporate a spatial-temporal
attention module into a classical CNN-RNN video recogni-
tion model.

Co-attention models [34, 46, 47, 48, 27, 26] are widely
adopted in tasks relating to language and vision such as im-
age captioning [40], visual question answering (VQA) [1]
and visual question generation (VQG) [29]. Lu et al. [27]
propose a hierarchical co-attention model for VQA, in which
image representation is used to guide the question atten-
tion and vice versa, exploiting the relation between the two
modalities, image and text.



Comparison to our approach. In contrast to the self-
attention and human-attention models for action recognition,
and the co-attention models for multi-modal (text and vision)
tasks, our framework applies dual attention in the context
of multi-task learning on a single input modality, namely
the raw video. Our novel iterative model exploits the ac-
tion/object relations to simultaneously learn cross-task ob-
ject/action attention maps, which significantly differs from
previous works that use self-guided attention [33, 6]. Our
model is able to not only outperform the previous state-of-
the-art on a human-object interaction dataset [11] but also
yield interpretable attention maps (see Section 4).

2. Dual Attention Network for Human-Object
Interactions

The dual attention network is designed in such a way that
the streams of human activity and objects interact with each
other by cross-weighting the intermediate features of action
and object for recognition. Our attention module is general
and can be plugged into any CNN-based action recognition
models for feature enhancement. We first describe CNN-
based feature representations for video understanding in
Sections 2.1 and 2.2. We then introduce the dual attention
model in Section 2.3, the building block for reasoning about
actions and objects. Finally we detail the full framework in
Section 2.4.

2.1. Representing videos with neural networks

There are two de facto paradigms to extract video repre-
sentations: 1) Image-based models which use spatial convo-
lutional kernels to process frames independently, and later
perform temporal feature aggregation by another model such
as a Long Short-Term Memory network (LSTM) [14] or
a Temporal Relation Network (TRN) [50]; 2) Video-based
models which apply convolutional kernels across frames
to process a video with spatial and temporal dimensions
directly.1

Image-based models. Given a video V with T frames,
CNN features from each frame are extracted independently,
resulting in a set of T raw features {f1,f2, · · · ,fT }, where
fk ∈ Rd×N , d is the feature dimension andN = HW is the
vectorized spatial dimension of the feature map. The CNN
features are then averaged by global pooling over the spatial
dimension, i.e.,

f̄k =
1

N

N∑
i=1

fk [., i] (1)

After that, various modules that process and fuse infor-
mation across temporal domain can be applied on top of

1We group the models based on the domain that they use for extracting
features of each frame, i.e., whether cross-time dynamics are exploited,
rather than types of convolutional kernels.

extracted features. For example, all frames can be modeled
by an LSTM, resulting in the final representation of a video
v̂ as:

v̂ = LSTM
(
f̄1, f̄2, · · · , f̄T

)
(2)

Alternatively, TRN [50] is a simple yet effective network
module recently proposed to explicitly learn and model tem-
poral dependencies across sparsely sampled frames at differ-
ent temporal scales. TRN can be applied on top of any 2D
CNN architecture. More specifically, an n-order relation, for
a given number n, is modeled as:

Rn(V ) = hφ

( ∑
k1<k2<···<kn

gθ(f̄k1 , f̄k2 , · · · , f̄kn)

)
(3)

Here hφ and gθ are both multi-layer perceptrons (MLPs)
fusing features of different frames. For the sake of efficiency,
rather than summing over all possible choices of n ordered
frames, a small number of tuples uniformly sampled are
chosen. The model can be extended to capture relations at
multiple temporal scales by considering different values of
n. The final representation of a video is an aggregation of a
2-order TRN up to an n-order TRN:

v̂ = R2(V ) +R3(V ) + · · ·+Rn(V ) (4)

where n is a hyperparameter of the model.
Video-based models. A video-based model operates

on multiple frames within a video. As a result, given a
video with T frames, features of each frame are not in-
dependent anymore, so that cross-time dynamics may be
learned in this way. Besides, temporal down-sampling is
often adopted to form a sufficiently large receptive field over
temporal domain, so that the number of remaining frames
T ′ is less or equal than T . Denote a set of T ′ features as
{f1,f2, · · · ,fT ′}, where fk can be a super frame if T ′ < T ,
and like in image-based models each frame is then averaged
by spatial global pooling. Since dynamics are expected to
be learned implicitly within convolutional neural networks,
the final representation of a video is usually acquired by
averaging across all (super) frames:

v̂ =
1

T ′

T ′∑
k=1

f̄k (5)

2.2. Object recognition in videos

Given a video of an HOI, we want to recognize the action
and the object associated with the interaction. For exam-
ple, for a “playing” action, we want our model to recognize
that it is “playing a violin” rather than “playing a piano”.
For training we assume that labels are provided at the video
level without bounding-boxes. A straight-forward method
for joint action-object recognition is to add a separate classi-
fication head for object recognition alongside the head for



plugging plug into outlet

spilling water onto plate

tearing paper into two pieces

tipping wallet over Ground truth: throwing remote in the air and letting it fall
Prediction: shoe falling like a rock

Figure 4: Examples of attention maps yielded by the Dual Attention Network with their predicted labels above. For each
clip four frames are shown out of eight frames for TRN with a stride of two. The first row is the input frames while the second
and third ones are attention maps for recognizing action and object respectively. The model accurately learns the alignment
between actions and objects, even when the background is complicated (e.g., 1st clip), or the predicted labels are wrong (e.g.,
3rd clip). These examples are drawn from validation subsets.

action recognition. Note that the task differs from the stan-
dard object recognition in static images, because the model
should look for the objects being manipulated by the actor
instead of those in the background. As a result, the object
head should also utilize feature representations containing
temporal information, i.e., for image-based models such as
TRN, another multi-scale TRN module is used for object
recognition, whereas for video-based models we simply use
another MLP.

2.3. Dual attention module

We propose a dual attention model for action and object
recognition, as illustrated in Figure 3. The model is not de-
pendent on a specific CNN architecture thus it is general and
extensible. The dual attention uses action priors to attend
image features for objects, and object priors for actions. Sup-
pose that we have the probabilities pa and po over actions
and objects respectively of their likelihood to appear in the
video. First, we apply two MLPs to encode these proba-
bility vectors into two intermediate feature representations
ha,ho ∈ Rd. The dual attention module takes input of the
visual features at each frame and generates the object and
action attention distributions over N regions of each frame:

zak = wT
a tanh

(
Wafk +Wotah

o
1
T
)

(6)

zok = wT
o tanh

(
Wofk +Watoh

a
1
T
)

(7)

αk = softmax(zak) (8)

βk = softmax(zok) (9)

where 1 ∈ RN is a vector whose elements are all equal to 1.
Wa,Wo ∈ RN×d and wa,wo ∈ RN are the weights to be
learned. Wota,Wato ∈ RN×d are parameters for object-to-
action attention and action-to-object attention, respectively.
αk,βk ∈ RN are the attention weights over spatial features
in fk. The representation of each frame is obtained by a
weighted-average over its spatial domain:

f̃ak =

N∑
i=1

αk,ifk [, i] (10)

f̃ok =

N∑
i=1

βk,ifk [, i] (11)

Finally, for x in {a, o}, we obtain representations of a video
for action and object respectively by substituting f̄xk with
f̃xk in Equation 3 or 5.

2.4. Full architecture

The full architecture is illustrated in Figure 2. Given a
video, the network first predicts the plausible action and ob-
ject labels using two separate heads. The prediction results
serve as the priors of actions and objects, which are subse-
quently used to produce the attention maps for objects and
actions, via the dual attention module. A second prediction is
performed with the attention-based enhanced features. This
two-step scheme expresses the interaction between human
and objects. The two prediction modules along with the
attention module are integrated into one network for end-to-
end learning. Some actions may involve multiple entities,
for instance, “put something on something”. We therefore
use two softmax classifiers to predict the objects. If the order
of the objects is exchangeable, e.g., in the category “move
something and something closer”, the classifiers will learn to
predict the objects in the order as they appear in the ground
truth to avoid ambiguity. We use a null label as a placeholder
for those action classes with only a single object.

3. Experiments

We conduct comprehensive experiments below to validate
the efficacy of our proposed Dual Attention Network.

3.1. Implementation details

We choose Temporal Segment Networks (TSN) [42] and
TRN [50] as the backbones among image-based models,
and Temporal Shift Module (TSM) [25] among video-based
models, given their demonstrated superior performance. We
did not choose I3D [2] because the temporal down-sampling



method top-1(A) top-5(A) top-1(O)
baseline 44.6 73.9 58.2
multi-tasking 45.7 75.0 59.9
dual attention 46.6 75.6 60.1

(a) Joint learning of two tasks. Dual attention
is better than multi-task learning at exploiting
action and object information.

method top-1(A) top-5(A) top-1(O)
baseline 44.6 73.9 -

- - 58.2
GT-object att. 50.2 79.7 -
GT-action att. - - 67.0

(b) Attention guided by ground-truth labels. The
significant improvements indicate that actions and
objects are indeed closely intertwined.

method top-1(A) top-5(A) top-1(O)
baseline 44.6 73.9 58.2
self attention 45.3 74.4 58.3
dual attention 46.6 75.6 60.1

(c) Self attention vs. dual attention. Action and
object priors offer a better attention mechanism
for recognition.

Table 1: Ablation study. A: action recognition; O: object recognition. The baseline is a TRN-4 network.

model backbone domain modality frames top-1 val top-5 val top-1 test top-5 test
TSN† [42] BN-Inception 2D RGB 8 41.1 69.3 - -
TSN Dual Attention [ours] BN-Inception 2D RGB 8 42.1 71.2 - -
I3D† [2] ResNet-50 3D RGB 16 43.8 73.2 - -
2D-CNN w/ LSTM [28] VGG-like 2D RGB 48 40.2 - 38.8 -
3D-CNN w/ LSTM [28] VGG-like 3D RGB 48 51.9 - 51.1 -
2D-3D-CNN w/ LSTM [28] VGG-like 2D + 3D RGB 48+48 51.6 - 50.4 -
TSM‡ [25] ResNet-50 3D RGB 8 56.7 83.7 - -
TSM† ResNet-50 3D RGB 8 54.0 81.3 - -
TSM Dual Attention [ours] ResNet-50 3D RGB 8 55.0 82.0 - -

TRN [50]
BN-Inception 2D RGB 8 48.8 77.6 50.8 79.3
BN-Inception 2D RGB + Flow 8+8 55.5 83.0 56.2 83.1

TRN Dual Attention [ours]
BN-Inception 2D RGB 8 51.6 80.3 54.0 81.9
BN-Inception 2D RGB + Flow 8+8 58.4 85.2 60.1 86.1

Table 2: Comparisons to state-of-the-art methods on Something-V2, with results on both the validation and test subsets. †: Our
re-implemented model. ‡: From original paper, pre-trained on Kinetics [21] asides from ImageNet [4].

rate is overly large (e.g., 16 frames input and 2 super frames
output) so that it is naturally inproper to use spatial attention.

Base networks. Following [50] and [25], we adopt In-
ception with Batch Normalization [17] (BN-Inception) as
our base models of TSN and TRN, while ResNet-50 [13]
pre-trained on ImageNet [4] as it of TSM for fair com-
parisons. The input size is set to 224×224. The spatial
size of output features is 7×7 with 1024 and 2048 channels
for BN-Inception and ResNet-50, respectively. We append
dropout [37] after the extracted features, with a ratio of 0.5.

Dual attention module. The dual attention module gen-
erates distributions over the spatial grids of feature maps for
each frame. To embed the probabilities of action or object
labels, we use a two-layer MLP with ReLU activations [30].
Both layers of the MLP have 512 channels. We project im-
age features into 512 channels by a single-layer perceptron
before feeding them into the attention module.

Recognition heads. We use the same sampling strategy
as in [50] for multi-scale TRNs. gφ is a two-layer MLP with
256 units per layer, while hφ is a two-layer MLP whose
output channels match the number of classes. We do not use
dropout within classification heads. For both TSN and TSM
the recognition head is a two-layer MLP. The classification
heads do not share weights between the first (pre-attention)
prediction and the second (post-attention) prediction. This
design does not introduce computational overhead as the
CNN feature extraction, which dominates the computation,

is shared.

3.2. Setup

Dataset. We use Something-something dataset V2 [11],
a video action dataset for human-object interactions, with
220, 847 videos from 174 classes. Those classes are fine-
grained so a model needs to distinguish actions such as “lift-
ing up one end of something then letting it drop down” from
actions such as “lifting something up completely then letting
it drop down”. This requires the model to look into details of
different actions. Note that object labels (nouns), provided
in V2 by the workers, may result in some inconsistencies: a
mobile phone can be depicted as “phone”, “mobile phone”,

“a phone”, “a black phone” or even “iPhone”. We therefore
merge nouns describing the same or similar objects, for a
total of 307 object clusters (see supplementary material for
details). We conduct our study on this dataset because it
is among the very few ones containing videos of diverse
human-object interactions instead of a few pre-defined re-
lations between actions and objects. Also it is one of a few
large-scale video dataset which provides object labels.

Training details. We use a multi-scale 4-frame TRN
(TRN-4) in all our ablation study for efficiency. Results of
an 8-frame TSN (TSN-8), an 8-frame TRN (TRN-8) and an
8-frame TSM (TSM-8) are included in the final experiment.
The networks are trained end-to-end. We augment the data
during training by scale and aspect-ratio jittering. The batch



size is set to 32 for TRN-4, 16 for TSN-8 and TRN-8, and
8 for TSM-8 due to GPU memory limitation. We train all
models on a server with 8 GPUs for 70 epochs. It starts with
a learning rate of 0.01, and is reduced by a factor of 10 at
epoch 50 and 65. We use a momentum of 0.9. The weight
decay of models with BN-Inception is set as 0.0001, whereas
0.0005 for models with ResNet. We train our models with
unfrozen Batch Normalization, which effectively stabilizes
the training procedure.

3.3. Main results

Results on the validation subset are in Table 1a. Our dual
attention model attached on a TRN-4 network yields accura-
cies of 46.6/75.6 (top1/top-5) on action recognition and of
60.1 (top-1) on object recognition, a 2.0/1.7 and 1.9-point
boost over the baseline. Compared to a separately trained
model of joint learning of actions and objects (multi-tasking),
our approach achieves superior performance, indicating that
dual attention is a better approach to utilize the action and
object information interchangeably.

Figure 4 visualizes attention maps learned by our model.
For each clip, the first row contains four out of the eight
frames chosen by the TRN module. The second and third
rows are attention maps for actions and objects. We see that
our model learns meaningful alignment between actions and
objects. For action recognition, the attention map generally
covers a larger space capturing the global information of the
entire action series; for object recognition, the attention map
is sharp and neat, mostly on the object being manipulated by
the actor. Surprisingly, the model can attend to the relevant
region and predict correct classes even when the background
is complex, e.g., the first example, in which the model finds
the dishes in the sink as well as the water being spilled but
ignores the background. In cases where the model produces
inaccurate predictions, e.g., the third example, our model
still looks at reasonable regions across frames, although it
seems unable to recognize the fine-grained categories.

Cohesion of actions and objects. In order to understand
the potential maximum performance gain that we can expect
from our approach, we experiment with using ground-truth
annotations as action and object priors instead of predicting
them. As shown in Table 1b, ground-truth guided atten-
tions show a remarkable improvement for both action recog-
nition (5.6%/5.8%) and object recognition (8.8%). This
demonstrates that action and object recognition are closely
intertwined, and that improving the first prediction in our
approach can lead to an even bigger boost to performance.

Figure 5 shows the class-wise improvements over base-
line with dual attention. We can see that the performance of
action categories which are closely associated with certain
types of objects is boosted. For example, a liquid prior is
helpful for recognizing “spill something”. Similarly, some-
thing untwistable is helpful for predicting “pretend or try
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Figure 5: Class-wise improvements of the Dual Attention
Network with respect to the baseline model. Action classes
closely associated with certain objects are improved.

and fail to twist something”. Meanwhile, the performance of
actions related to the physical localization of objects, such
as “turn the camera upwards while film something” and

“move something away” also gets better. The improvement
on these action categories strongly indicates that our dual
attention mechanism facilitate the model to trace the object
manipulated by the actor.

Self attention vs. Dual attention. We train a model by
generating attention maps from image features only w/o the
guidance of priors, termed self-attention model. Table 1c
compares our approach with the self-attention one. The
inferior performance of self attention suggests that actions
and objects priors indeed provide useful information for
objects and actions recognition respectively.

3.4. Comparisons with state-of-the-art methods

Table 2 summarizes results on Something-Something V2.
We do not use the earlier version as object annotations are
missing in V1 and label noise is greatly reduced in the
latest release. We compare our approach with TSN [42],
I3D [2], 2D and 3D CNNs with LSTM from Something-
Something [28], and previous state-of-the-art TRN and TSM.
These approaches differ from each other in many aspects
such as backbones, temporal feature fusion techniques, train-
ing schemes, number of input frames, model domains and
modalities. Still, models with the dual attention module sur-
pass all their counterparts. Specifically, TSN dual attention
is better than original TSN by 1.0/1.9% points; TSM dual
attention is better than original TSM by 1.0/0.7% points;
TRN dual attention achieves top-1 accuracy of 51.6% and
top-5 accuracy of 80.3% on the validation subset, which is
better than any previous 2D model. We conjecture that per-
formance boost of TRN being larger than it of TSN and TSM
is because TRN has more complex recognition heads so that
it might be able to better exploit attended features. When
TRN dual attention is turned into a two-stream models by
adding an optical flow branch in TRN, our approach further
boosts the performance to 58.4/85.2%.
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Lifting box up completely without letting it drop down

Key falling like a rock

Figure 6: Visualization of spatial and temporal localization. We visualize one frame out of each segment (four frames).
Our method find the object being manipulated, as well as the segments in which the action actually happens.

4. Weakly-supervised Localization
We can reason about human-object interactions by in-

specting attention maps yielded by the model. Here, we
apply the model to two weakly-supervised localization tasks:
spatiotemporal localization and object affordance segmenta-
tion.

4.1. Spatiotemporal localization

The attention maps, learned from video-level action and
object labels only, can accurately localize objects in the
spatial domain, and actions in the temporal domain. The lo-
calization task requires the object attention map of all frames
available. This is achieved by running the dual attention net-
work alone with predictions of the object and action from our
model, and the CNN features extracted from every frame, as
input. A single forward pass with a batch of n frames can
generate n attention maps.

The “where”: spatial object localization. We generate
object bounding boxes by thresholding the object attention
map. We set the threshold to 60% of the maximum weight
in the map. We then apply the flood-fill algorithm to find
the connected regions. Bounding-boxes are generated by
calculating the minimum and maximum coordinates of each
region. We always take the largest bounding-box as a predic-
tion, while the second largest one (if available) is optionally
taken based on its size and the number of predicted objects.

The “when”: temporal action localization. We ob-
serve that a large amount of human-object interactions take
place once the object starts to move. Thus, we can associate
the start and end of an action via the alteration of the atten-
tion maps. We divide a video into segments covering 1/3
second each, i.e., four frames in one segment for videos from
the Something-Something dataset. We average the attention
maps within each segment to reduce the margin of error. We
measure the difference between two object attention maps

Action Category A.D.
Piling something up 49.1
Stacking number of something 48.4
Pouring sth. into sth. until it overflows 47.9
Pouring something into something 43.7
Digging something out of something 43.5
Pretending to put something on a surface 35.4
Spinning something so it continues spinning 34.8
Putting something on a surface 29.8
Spinning something that quickly stops spinning 28.5
Tipping something over 27.7
Uncovering something 26.8
Something falling like a rock 25.7
Throwing something onto a surface 22.7

Table 3: The average duration (A.D.) of trimmed videos in
each action category. The A.D. is measured by frames and
the fps rate is 12. The results are in accordance with our
human knowledge.

Model IoU=0.3 IoU=0.4 IoU=0.5
Dual Attention 72.5 56.0 33.7
Self Attention 62.2 40.4 26.4

Table 4: Object localization results (in Average Precision)
of dual attention and self attention on the validation subset.

P and Q (as they are two discrete probability distributions)
via the Kullback–Leibler divergence, i.e.:

DKL(P ||Q) = −
∑
i

P (i) log
Q(i)

P (i)
(12)

where the sum is over the discrete points in the domain of the
distribution. We filter out the leading (trailing) segments if
the difference to its preceding (succeeding) segment is below



a threshold. The remaining segments are considered as the
interval in which an action happens. We set the threshold to
0.06. We consider an action spanning over the entire video if
the filtered video is shorter than one second to avoid actions
such as “holding something” or “showing something”.

Results. We perform temporal and spatial localization
on videos from the validation subset (see Figure 6). We can
see that the object being interacted is highlighted and a rea-
sonable bounding-box associated is generated accordingly.
Due to the stable and accurate attention map, we are able to
eliminate leading and trailing frames irrelevant to the action
and find the segments wherein the box is being lifted and the
key is falling. We note that compared to using optical flow
our approach has more advantages that it can be performed
with sparsely sampled segments if the video is very long,
and is more robust to camera shake.

We conduct quantitative evaluation of weakly-supervised
spatial localization by dual attention model and self attention
model on the validation subset, as shown in Table 4. We
randomly sample 100 videos from validation subset and
annotate 2 random frames in each video. We report the
average precision (AP) under various intersection-of-union
(IoU) criteria. As can be seen from Table 4, our dual attention
model yields much better localization accuracy than the
self-attention model, indicating that action priors help the
model better localize the object being manipulated. We
further analyze the statistics of the trimmed videos. Out
of total 24,777 videos, 16,592 (∼67%) are trimmed by our
temporal localization technique. The average trimmed length
is 13 frames (∼1 second), which, compared to the average
length of 3.1 seconds, accounts for 1/3 of overall frames.
After performing temporal localization, we also analyze
the average length of videos in each action category and
summarize the results in Table 3. The longest actions involve

“piling something up” and “stacking number of something”
whereas the shortest ones involve “throwing something onto
a surface” and “something falling like a rock”. It is also
interesting to see that pretending to do something is longer
than actually doing it, something continues spinning is longer
than it quickly stops spinning, and pouring something until
overflowing is longer than pouring something.

4.2. Object affordance segmentation

Humans can learn the roles of different parts of an object
by observing how the object is being used, i.e., by watching
examples of “pouring water into a bottle” we can infer not
only that water can be poured, but also through which part
of the bottle the water can be poured. Our model can learn
that detailed information. Given a question such as “Where
to plug cables?”, we find the videos with related labels, e.g.,
videos labeled with “plugging a cable into a computer”.
Note that since we would have acquired the ground-truth
object label when retrieving videos, the ground-truth object-

Where to plug in power plugs?
Plugging plug into socket

Where to open bottles?
Opening bottle

Where to put sth. into cups?
Putting something into cup

Where to open laptops?
Opening laptop

Where to open shelves?
Opening shelf

Where to pour sth. into jars?
Pouring water into jar

Where to lift books?
Lift one side of book

Where to pull out tissues?
Pulling tissue out of box

Where to plug cables?
Plugging cable into computer

Figure 7: Examples of object-affordance segmentation.
The model trained with video-level annotations can find
object parts associated with possible ongoing actions.

guided attention is used to create attention maps; meanwhile,
this model is trained with ground-truth objects to perform
action recognition thus it mixes actions and objects for affor-
dance discovery. After acquiring the attention maps, we then
segment by a threshold of 60% of the maximum attention
weight. The results are in Figure 7: the model focuses on the
object parts associated with the action instead of the whole
object. For example, the model focuses on the brim of a cup
for videos involving pouring something into a cup or putting
something into a cup. Importantly, the model knows to focus
on the handle of a shelf even in a still image. This enables
us to effectively parse object parts and infer their affordance
even when the labels used for training are at the video-level.

5. Conclusion
Dual Attention Networks is proposed to recognize human-

object interactions. It achieves very competitive perfor-
mance on Something-Something V2 dataset. Based on ac-
tions/objects priors, The model is able to produce intuitive
and interpretable attention maps which can enhance video
feature representations for improving the recognition of both
objects and actions and enable better video understanding.
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[41] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-
Lin Liu. Action recognition by dense trajectories. In Com-
puter Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pages 3169–3176. IEEE, 2011. 2

[42] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment
networks: Towards good practices for deep action recognition.

In European Conference on Computer Vision, pages 20–36.
Springer, 2016. 4, 5, 6

[43] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming
He. Non-local neural networks. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.
2

[44] Xiaolong Wang and Abhinav Gupta. Videos as space-time
region graphs. In The European Conference on Computer
Vision (ECCV), September 2018. 1

[45] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Computer Vision and Pattern Recognition
(CVPR), 2017 IEEE Conference on, pages 5987–5995. IEEE,
2017. 1

[46] Caiming Xiong, Stephen Merity, and Richard Socher. Dy-
namic memory networks for visual and textual question an-
swering. In International conference on machine learning,
pages 2397–2406, 2016. 2

[47] Huijuan Xu and Kate Saenko. Ask, attend and answer: Ex-
ploring question-guided spatial attention for visual question
answering. In European Conference on Computer Vision,
pages 451–466. Springer, 2016. 2

[48] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex
Smola. Stacked attention networks for image question answer-
ing. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 21–29, 2016. 2

[49] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijaya-
narasimhan, Oriol Vinyals, Rajat Monga, and George Toderici.
Beyond short snippets: Deep networks for video classifica-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4694–4702, 2015. 2

[50] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Tor-
ralba. Temporal relational reasoning in videos. In The Eu-
ropean Conference on Computer Vision (ECCV), September
2018. 2, 3, 4, 5


